Distinct Roles of Soluble and Transmembrane Adenylyl Cyclases in the Regulation of Flagellar Motility in Ciona Sperm
نویسندگان
چکیده
Adenylyl cyclase (AC) is a key enzyme that synthesizes cyclic AMP (cAMP) at the onset of the signaling pathway to activate sperm motility. Here, we showed that both transmembrane AC (tmAC) and soluble AC (sAC) are distinctly involved in the regulation of sperm motility in the ascidian Ciona intestinalis. A tmAC inhibitor blocked both cAMP synthesis and the activation of sperm motility induced by the egg factor sperm activating and attracting factor (SAAF), as well as those induced by theophylline, an inhibitor of phoshodiesterase. It also significantly inhibited cAMP-dependent phosphorylation of a set of proteins at motility activation. On the other hand, a sAC inhibitor does not affect on SAAF-induced transient increase of cAMP, motility activation or protein phosphorylation, but it reduced swimming velocity to half in theophylline-induced sperm. A sAC inhibitor KH-7 induced circular swimming trajectory with smaller diameter and significantly suppressed chemotaxis of sperm to SAAF. These results suggest that tmAC is involved in the basic mechanism for motility activation through cAMP-dependent protein phosphorylation, whereas sAC plays distinct roles in increase of flagellar beat frequency and in the Ca2+-dependent chemotactic movement of sperm.
منابع مشابه
Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.
Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), a...
متن کاملBicarbonate-regulated soluble adenylyl cyclase.
Soluble adenylyl cyclase (sAC) represents a novel form of mammalian adenylyl cyclase structurally, molecularly, and biochemically distinct from the G protein-regulated, transmembrane adenylyl cyclases (tmACs). sAC possesses no transmembrane domains and is insensitive to classic modulators of tmACs, such as heterotrimeric G proteins and P site ligands. Thus, sAC defines an independently regulate...
متن کاملIntracellular cAMP signaling by soluble adenylyl cyclase.
Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cyclic adenosine 3',5' monophosphate (cAMP). sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its uniq...
متن کاملChemotactic response with a constant delay-time mechanism in Ciona spermatozoa revealed by a high time resolution analysis of flagellar motility
During their chemotactic swimming toward eggs, sperm cells detect their species-specific chemoattractant and sense concentration gradients by unknown mechanisms. After sensing the attractant, sperm cells commonly demonstrate a series of responses involving different swimming patterns by changing flagellar beats, gradually approaching a swimming path toward the eggs, which is the source of chemo...
متن کاملCytosolic adenylyl cyclase defines a unique signaling molecule in mammals.
Mammals have nine differentially regulated isoforms of G protein-responsive transmembrane-spanning adenylyl cyclases. We now describe the existence of a distinct class of mammalian adenylyl cyclase that is soluble and insensitive to G protein or Forskolin regulation. Northern analysis indicates the gene encoding soluble adenylyl cyclase (sAC) is preferentially expressed in testis. As purified f...
متن کامل